Class Seminar for 5th Semester students, 2021

Department of Physics, Don Bosco College, Tura

A students' seminar was organized by the Department of Physics, under the charge of Dr. Yubaraj Sharma on the 20th and 21st of October, 2021 for the 5th Semester students. The seminar was a part of continuous internal assessment. Each student was assigned a topic and allotted about 15 minutes to present his/her presentation on the white board.

The topics were from the syllabus of the two papers *PHY05(T)* - *Mathematical Physics, Quantum Mechanics* and *PHY06(T) Electrodynamics, Electronics-II.*

This exercise had three-fold advantage in that the students were given a platform to exercise their public speaking skills, the topics were relevant for their upcoming exams and the allocation of internal marks provided incentive to take this task seriously. The seminar concluded satisfactorily.

Dr. Yubaraj Sharma

Assistant Professor, Department of Physics, Don Bosco College, Tura Meghalaya, India

Schedule and details of the student seminar

Tentative schedule: 20/10/2021 and 21/10/2021

SI. No.	Roll. No.	Name	Topic assigned
1	BS19-010	Arick Sengkan Ch Sangma	Orthogonal Curvilinear Coordinates
2	BS19-020	Bertila T Sangma	Curvilinear Coordinates
3	BS19-021	Betchuel Ch Momin	Orthogonal Curvilinear Coordinates
4	BS19-022	Bhaskar Saha	Condition for orthogonality
5	BS19-024	Bibek Kumar Mishra	Gradient in Curvilinear Coordinates
6	BS19-025	Bilshan Jearim M Marak	Gradient in Curvilinear Coordinates
7	BS19-030	Bosonjit Hajong	Gradient in Curvilinear Coordinates
8	BS19-031	Bulbul G Momin	Divergence in Curvilinear Coordinates
9	BS19-043	Cheseng Matgrik R Marak	Divergence in Curvilinear Coordinates
10	BS19-069	Erimflower Narzary	Divergence in Curvilinear Coordinates
11	BS19-077	Hriday Modak	Divergence in Curvilinear Coordinates
12	BS19-113	Nokatchi S Sangma	Curl in Curvilinear Coordinates
13	BS19-116	Palseng Ch Sangma	Curl in Curvilinear Coordinates
14	BS19-119	Poonam Rai	Laplacian in Curvilinear Coordinates
15	BS19-134	Sansika D Momin	Laplacian in Curvilinear Coordinates
16	BS19-135	Sengbath T Sangma	Laplacian in Curvilinear Coordinates
17	BS19-140	Silme N Samgma	Cylindrical Coordinates as a special curvilin-
			ear system
18	BS19-141	Sonia Biswas	Cylindrical Coordinates as a special curvilin-
			ear system
19	BS19-142	Soyod Mahmudul Hassan	Cylindrical Coordinates as a special curvilin-
			ear system
20	BS19-149	Tingjoyril Halam	Spherical Polar Coordinates as a special
			curvilinear system
21	BS19-151	Trasustar G Momin	absent
22	BS19-152	Traviana Walnisa K Sangma	Spherical Polar Coordinates as a special
			curvilinear system
23	BS19-162	Liang Bacheng R Marak	Spherical Polar Coordinates as a special
			curvilinear system

5th Semister 20th Ochler, 2021 Studient Semisars Sig YS TOPSE : CURE 24 TERMS FOR ORTHOGMAL CURVILINGAR $\begin{array}{c} \left(\mathsf{Op}(\mathbf{r}^{*},\mathsf{Cos}^{*},\mathsf{b}^{*},\mathsf{th}^{*},\mathsf$ 1. die Scorrintor P. $\vec{\nabla} (\alpha \times \vec{k}) = \alpha (\sigma \vec{\lambda}) + \vec{\delta} (\sigma \alpha)$ por al Ŧ٢h,